EFFICIENT VLSI ARCHITECTURES OF LIFTING-BASED DISCRETE WAVELET
TRANSFORM BY SYSTEMATIC DESIGN METHOD

Chao-Tsung Huang, Po-Chih Tseng, and Liang-Gee Chen

DSP/IC Design Lab, Graduate Institute of Electronics Engineering
National Taiwan University, Taipei, Taiwan, R.O.C.
E-mail: {cthuang, pctseng, lgchen}@video.ee.ntu.edu.tw

ABSTRACT

In this paper, an effective systematic design method is proposed
to construct several efficient VLSI architectures of 1-D and 2-D
lifting-based discrete wavelet transform. This design method
first performs a specific lifting factorization for any finite dis-
crete wavelet transform filter to obtain an optimal algorithm
representation for hardware implementation. The optimized
algorithm then turns into 1-D systolic architectures through
dependence graph formation and systolic arrays mapping.
Based on the 1-D architectures, a general 2-D discrete wavelet
transform framework is used to construct the corresponding 2-D
architectures. According to the comparison results, the con-
structed VLSI architectures are more efficient than previous arts
in term of arithmetic units and memory storage.

1. INTRODUCTION

During the past decade, wavelets have been developed as an
effective multiresolution analysis tool. Since the discrete wavelet
transform (DWT) was deduced by Mallat [1], many researches
on wavelet-based image analysis and compression have derived
fruitful results. The DWT can decompose a signal into different
subbands of well-defined time-frequency characteristics. For
instance, in the dyadic type decomposition, the lower frequency
subbands have finer frequency resolution and coarser time reso-
lution. Emerging image coding standards, such as the JPEG2000
still image coding and the MPEG-4 still texture coding, have
adopted the DWT as their transform coder, due to its well time-
frequency decomposition. However, the DWT requires much
more arithmetic computations than old-fashioned transforms
such as the discrete cosine transform (DCT). Besides, contrary to
the block-based DCT, the DWT is basically frame-based. This
huge amount of memory requirement is usually the bottleneck of
the implementation for 2-D DWT.

Thanks to the appearance of lifting scheme [2] and a factori-
zation method that factors wavelet transforms into lifting steps
[3], the lifting scheme is widely used to speed up the DWT com-
putation and possible to reduce the memory requirement of 2-D
DWT. However, due to the exploitation of Euclidean algorithm
for Laurent polynomials in this lifting factorization method, the
factorization process is non-unique. This is, there may exist
many essentially different lifting factorizations, but which one

0-7803-7448-7/02/$17.00 ©2002 IEEE

more suitable for software or hardware implementation is still an
open design issue.

In this paper, an effective systematic design method is pro-
posed to construct several efficient VLSI architectures of 1-D
and 2-D lifting-based DWT. The concepts of lifting scheme and
the lifting factorization method are described in section 2. Sec-
tion 3 presents the detailed design stages of proposed systematic
design method. A case study is given in section 4 for an example.
In section 5, the constructed architectures are compared with
several previous arts to show its efficiency. Finally, brief sum-
maries are given in section 6 to conclude this paper.

2. DISCRETE WAVELET TRANSFORM WITH
LIFTING SCHEME

The lifting scheme is a new method for constructing wavelets
entirely by spatial approach [2]. Using lifting scheme to con-
struct wavelets has many advantages, such as allowing a faster
and fully in-place implementation of the wavelet transforms,
immediately to find the inverse transform, easily to manage the
boundary extension, and possibly of defining a wavelet-like
transform that maps integer-to-integer. According to [3], any
DWT with finite filter can be decomposed into a finite sequence
of simple filtering steps, which is called the lifting steps. This
decomposition corresponds to a factorization of the polyphase
matrix of target wavelet filter into a sequence of alternating up-
per and lower triangular matrices and a constant diagonal matrix.
Fig. 1 shows the general block diagram of a DWT filter. The

forward transform uses two analysis filters ; (low pass) and é

(high pass) followed by subsampling, while the inverse trans-
form first upsamples and then uses two synthesis filters 2 (low
pass) and g (high pass).

> @[}
®
w# —(D—~{ 2@ |

Figure 1: General block diagram of a DWT filter

Since the polyphase representation of a filter A is
H2)=h,@)+7'h(2)
the polyphase matrix of a DWT filter can be assembled as

V - 565

_[A(® g.(2)
P(’)‘[h,,(z) g,,(z)]

In [3], it has been shown that if 4 and g is a complementary

filter pair, then with the exploitation of Euclidean algorithm for
Laurent polynomials, there always exist Laurent polynomials
5,(2) t,(2) and a non-zero constant K so that

1 5(2) oK 0
P@)= H[][t,(z) 1][0 l/K]

In other words, any finite DWT filter can be obtained by starting
with the Lazy wavelet followed by several lifting steps with a
scaling.

3. PROPOSED SYSTEMATIC DESIGN METHOD

In this section, a systematic design method for hardware imple-
mentation of lifting-based DWT is presented. By this systematic
design method, several efficient VLSI architectures of 1-D and
2-D lifting-based DWT can be easily constructed. As shown in
Fig. 2, this design method consists of several design stages. Once
a finite DWT filter is chosen, four subsequent design stages are
then performed to construct the corresponding VLSI architec-
tures. Detailed contents of each design stage are described in
following subsections.

S
Target
Wavelet Filter

Specific Lifting
Factorization

y
Dependence
Graph Formation
y

Systolic Arrays
Mapping
]
2-D DWT
Framework

1-D Lifting-based
DWT Architectures

2-D Lifting-based
DWT Architectures

Figure 2: Proposed systematic design method

3.1. Specific Lifting Factorization

As pointed out in section 1, the lifting factorization process is
non-unique. This freedom diversifies the design space of hard-
ware implementation for lifting-based DWT. In the proposed
systematic design method, a specific lifting factorization is cho-
sen for all target wavelet filters. This factorization principle is to
factor the Laurent polynomials s,(z) and ¢,(z) as symmetric or

anti-symmetric as possible and allow at most two coefficients in
each lifting step. Moreover, one lifting step can further be de-
composed into two lifting steps as

1 a(2)+b(z)| |1 a()1 b(z)
0 1 o1 Jo 1

Following this principle, in each lifting step, an even location
will only get information from two odd locations or vice versa.
There exist only four possible categories of basic processing
element in such factorization as shown in Fig. 3. Fig. 4 shows
the four possible lifting step categories for t,(z), and each cor-

responds to the four basic processing element categories in Fig.
3. The case of 5,(2) is similar.

3_@@%

o3 ood-

(C)

Figure 3: Four categories of basic processmg element

1 0 1 0 1 0 1 0
|:a(l+z") 1 |al-2z") 1 [a 1] [aiﬂz" 1]

(a) () (© (d)
Figure 4: Four lifting step categories for ¢,(z)

The category (d) in Fig. 3 and Fig. 4 can be regarded as a
general case of (a), (b), and (c). One can expect that, if the target
wavelet filter is linear phase, namely, symmetric or anti-
symmetric, then only the first three categories should appear by
specific lifting factorization. In such cases, the number of multi-
plication in each lifting step can be reduced by at most a factor
of two. In the following design stages, the scale factor K and 1/K
will not be involved since it can be implemented exactly with
two multipliers.

3.2. Dependence Graph Formation

Once the specific lifting factorization is done, a dependence
graph (DG) can be drawn for its corresponding lifting factored
wavelet filter. However, in order to simplify the complexity of
next design stage, the Systolic Arrays Mapping, a specific for-
mation of the DG is performed to obtain a more regular and
compact DG form.

Figure 5: Dependence graph formation

V - 566

As shown in Fig. 5(a), any lifting step constructed by specific
lifting factorization can be depicted as a general basic DG that is
a combination of three input nodes (A, B, C) and one computa-
tion-output node (D). Due to the step-by-step property of speci-
fic lifting factorization, without loss of generality but for sim-
plicity and regularity consideration, one slice of a DG can be
depicted as shown in Fig. 5(b). In Fig. 5(b), the white node
(tagged 1~7) denoted as the input node, and the black node (tag-
ged A~F) denoted as the computation-output node. The forma-
tion principle is described as following two steps: First, merge
one pair of even and odd input nodes into a new input node. As
shown in Fig. 5(c), except for the first even node (tagged 1), one
even and one odd node are merged into new single input node.
The first even node 1 can be treated as merged with a virtual odd
node N such that this merging step is regular. This step can make
sure that the following systolic arrays mapped architectures have
unified input-output ports and throughput. Second, move the
computation-output nodes to suitable position such that there is
no backward directional data flow existing in the DG. This step
can make sure that the mapped architectures have unified data
flow direction.

3.3. Systolic Arrays Mapping

After the DG formation design stage, an unique systolic arrays
mapping parameters are applied to the DG to obtain the corre-
sponding signal flow graph (SFG). As the same systolic archi-
tecture definitions in [4], the DG in Fig. 5(c) is mapped by

Processor Vector p = (O,I)T
Projection Vector d = (1,0)"

Scheduling Vector s = (1,0)7

The resulting SFG is depicted as shown in Fig. 6(a). The detailed
architecture of each PE can be found in Fig. 3, one of the four
categories of basic processing element dependent on its corre-
sponding lifting step category. In this architecture, the critical
path is two PE delay. If better performance is required, then
further pipelining can be applied to the original SFG. As shown
in Fig. 6(b), after the pipelining (dash line), two pipeline delay
registers (D) are added but one PE critical path delay is achieved.
By above three design stages, 1-D lifting-based architectures of
any finite DWT filter can be easily constructed. Fig. 7 shows the
general model of 1-D lifting-based DWT architectures construct-
ed by proposed systematic design method.

:pE., ,:pE.,_r(D

3 { ¢ 8

B

(a)
B = : r.@
“Hel: PE - 3 « PE -
(b)
Figure 6: Systolic arrays mapped 1-D DWT architectures
Even —» 1-D Lifting-based —» Low Pass
Odd —»] DWT Architectures | High Pass

Figure 7: General model of 1-D lifting-based DWT architectures

3.4. 2-D DWT Framework

The last design stage of proposed systematic design method is to
put the constructed 1-D lifting-based DWT architectures into a
general 2-D DWT framework to construct the 2-D lifting-based
DWT architectures.

Even —w{
Row Filter Module

Odd —w|

Intermediate Data Buffer
(Line Buffer)

LL, HL -—

Coulmn Filter Module
LH, HH t

Temporal Data Buffer
(Linc Buffer)

(a) One-level framework

Temporal Data Buffer
(Register Buffer)
Original
Input
Signat (1% Row Filter Module
Intermediate Data Buffer
(Linc Buffer)
HL {
Coulmn Fiiter Module
LH, HH

(Linc Buffer)
(b) Multi-level framework
Figure 8: The general 2-D DWT framework

The proposed general 2-D framework for lifting-based DWT
shown in Fig. 8 uses the line-based architecture. Fig. 8(a) is the
one-level framework, and the row and column filter modules in
this figure are previously discussed 1-D lifting-based DWT ar-
chitectures. The intermediate data buffer is composed of six
separate two-port memories, three for row filtered low pass sig-
nal and three for row filtered high pass signal. Each memory
depth is half the signal line width. These intermediate data
memories act as dynamic rotation buffers. At each time moment,
two intermediate data memories of low pass or high pass signal
are accessed by the column filter module, and one pair of inter-
mediate data memories are accessed by the row filter module.
The temporal data buffer is composed of several separate two-
port memories, each depth is the same as the signal line width.
The number of temporal data memories is determined by the
amount of temporal registers in 1-D lifting-based DWT archi-
tectures. For the two cases in Fig. 6, (a) requires only two and (b)
requires two more for pipeline registers

The one-level framework can be easily extended to multi-
level framework in dyadic decomposition type scheduled by
recursive pyramid algorithm [5] (RPA) as shown in Fig. 8(b).
Instead of two-input per cycle in the case of one-level framework,
the multi-level framework only requires one-input per cycle by
arranging the RPA schedule for row and column filter module so
as to make this framework more feasible. Assume the decompo-
sition level is J, then due to the multi-level operation, the inter-
mediate and temporal data buffers are also determined by the J.
Besides, for the row filter module, J-1 times of the amount of
temporal registers in 1-D lifting-based DWT architectures are
required as its temporal data buffer. Hence, the total amount of
memory storage can be summarized as

V-567

Storage=(3+TC)xNx(l+%+...+%)+JxTR
where N denotes the signal line width as well as Tg and T, de-
note the amount of temporal registers in 1-D row and column
lifting-based DWT architectures, respectively. The line buffer for
intermediate data and column temporal data can be easily im-
plemented with feasible two-port memories because of very
regular memory addressing.

4. CASE STUDY

In this section, a practical example is given to show the effective
of proposed systematic design method. The case to be studied is
the popular (9,7) odd symmetric biorthogonal filter, which is
adopted by JPEG2000 lossy coding. First, by specific lifting
factorization, the polyphase matrix can be factored into four
lifting steps and a scaling constant.

1 aqezH] 1 o1 ya+zH] 1 0]6 ‘1’
P(z)‘[o 1 IB(HZ) 110 1 Jea+z) 110 c

=-1.586134342; 8=-0.05298011854; v =0.8829110762;
§=10.4435068522; {=1.149604398
This factorization leads to the original and specific DG forma-
tion as shown in Fig. 9(a) and (b).

it

(@) (b)
Figure 9: Dependence graph formation for (9,7) filter

After the systolic arrays mapping, the 1-D lifting-based DWT
architecture for (9,7) filter is shown in Fig. 10. The PE architec-
ture in this figure corresponds to Fig. 3(a).

L Lo L~ _J’G
. PE - . . + PE o
) =10 PE Rl -

Figure 10: 1-D lifting-based DWT architecture for (9,7) filter

®
©

Nl PE -

In above architecture, the number of temporal registers is
four. Of course, if better performance is required, further pipe-
lining can be made among each PE. However, since the number
of temporal registers in 1-D lifting-based DWT architectures
determines the total storage of 2-D DWT architecture, some
trade-off should be considered to achieve an optimal solution for
target applications.

5. COMPARISONS

In order to show the efficiency of constructed lifting-based DWT
architectures, several 1-D and 2-D DWT architectures are chosen
for comparison. Here (9,7) filter is used as the target DWT filter.

In [6], a 1-D lifting-based DWT architecture for (9,7) is pro-
posed. Focus only on the lifting-based DWT datapath and ig-

noring the scale factors, the comparison results are shown in
Table 1. Although the improvement is not significant, but note
that our design method can retarget for any finite DWT filter.

Table 1: Comparison with 1-D lifting-based DWT architecture
Architecture (1-D) | Multiplier | Adder| Register
Lifting [6] 4 8 6
Proposed 4 8 4

A 2-D architecture comparison with the well-known systolic-
parallel [7] and parallel-parallel architectures [8] is given in
Table 2.

Table 2: Comparison with 2-D DWT architectures

Architecture (2-D) | Multiplier | Adder| Line Buffer
Systolic-Parallel [7] 36 28 19N
Parallel-Parallel [8] 36 28 19N
Proposed 10 16 14N
6. CONCLUSION

We have presented an effective and systematic design method to
construct the VLSI architectures of lifting-based DWT. This
complete design flow can obtain feasible and efficient architec-
tures for any finite DWT filter by mapping lifting steps to sys-
tolic arrays. Besides, the proposed lifting strategy can achieve
optimal decomposition for linear phase filter banks. Furthermore,
since the lifting factorization algorithm can decompose any 2-
channel filter bank of perfect reconstruction very well, our des-
ign method and proposed architectures are also suitable for any
2-channel subband filter bank.

7. REFERENCE

[1]1S. Mallat, “A theory for multiresolution signal decomposi-
tion: the wavelet representation,” IEEE Trans. Pattern Anal.
Machine Intell., Vol. 11, pp. 674-693, July 1989.

[2] W. Sweldens, “The lifting scheme: A custom-design con-
struction of biorthogonal wavelets,” Applied and Computational
Harmonic Analysis 3, pp. 186-200, 1996.

[3] I. Daubechies and W. Sweldens, “Factoring wavelet trans-
forms into lifting steps,” The J. of Fourier Analysis and Appli-
cations, Vol. 4, pp. 247-269, 1998.

[4] K. K. Parhi, VLSI Digital Signal Processing Systems — Des-
ign and Implementation, Chapter 7: Systolic Architecture Design
[5] M. Vishwanath, “The recursive pyramid algorithm for the
discrete wavelet transform,” IEEE Transactions on Signal Proc-
essing, Vol. 42, No. 3, pp. 673-677, March 1994,

[6] J. M. Jou, Y. H. Shiau, C. C. Liu, “Efficient VLSI architec-
tures for the biorthogonal wavelet transform by filter bank and
lifting scheme” IEEE International Symposium on Circuits and
Systems 2001, Vol. 2, pp. 529 -532

[7] M. Vishwanath, R. Owens, and M. J. Irwin, “VLSI archi-
tectures for the discrete wavelet transform,” IEEE Trans. Cir-
cuits and Systems II, Analog and Digital Signal Processing, Vol.
42, No. 5, pp. 305-316, May 1995.

[8] C. Chakrabarti and M. Vishwanath, “Efficient realizations of
the discrete and continuous wavelet transforms: from single chip
implementations to mappings on SIMD array computers,” IEEE
Trans. Signal Processing, Vol. 43, No. 3, pp. 759-771, March
1995.

V -568

	Index:
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index:
	INDEX:
	ind:
	Intentional blank: This page is intentionally blank

